Detección de plantas de banano y sus principales enfermedades mediante imágenes aéreas y metodos de aprendizaje automatico

Las herramientas de detección remota, junto con el aprendizaje automático, tienen un papel importante en el monitoreo de cultivos y la vigilancia de enfermedades. La combinación de datos de imágenes satelitales de alta resolución utilizando vehículos aéreos no tripulados (UAV) con modelos avanzados de aprendizaje automático mediante el uso de aplicaciones móviles, podría ayudar a detectar y clasificar plantas de banano y proporcionar más información sobre su estado de sanidad en general. Este modelo mixto UAV-RGB de detección y clasificación de objetos reveló que se puede clasificar con éxito las plantas sanas y enfermas de banano entre un 90,8% y un 99,4%.
- Más información en: sciencedirect.com
Noticias similares
-
Italia: Uso de datos hiperespectrales de las hojas para detectar tempranamente a la Flavescencia dorada
En un viñedo de uva roja afectado por la Flavescencia dorada (FD), se demostró que los datos...
-
Primer reporte de Meloidogyne enterolobii infectando tomate en Texas, Estados Unidos
Se observó que una planta de tomate (Solanum lycopersicum) comprada a un minorista, presentaba...
-
Primer reporte de Stemphylium lycopersici que causa manchas foliares en Kalanchoe blossfeldiana en los USA
Plantas de Kalanchoe blossfeldiana mostraron edemas y manchas necróticas en un invernadero en...