YOLO_MRC: Modelo rápido y ligero para detección en tiempo real y conteo individual de plagas de Tephritidae
Usuario Viernes, 22 de Diciembre de 2023 Artículos Científicos
En esta investigación tomaron a Bactrocera cucurbitae como objetivo de detección y presentan un modelo algorítmico de aprendizaje profundo para detección de plagas de Tephritidae y conteo individual en tiempo real rápido y liviano denominado YOLO_MRC, que logró una precisión promedio en el conteo de plagas del 94 %.
- Más información en: sciencedirect.com
Noticias similares
-
Primer reporte de un rabdovirus que infecta a maracuyá (Passiflora edulis) en China
Se recolectaron muestras foliares de plantas de maracuya (Passiflora edulis) con síntomas típicos...
-
Ensayos de qPCR en tiempo real SYBR Green para detección y cuantificación de especies de Botryosphaeriaceae que atacan vid
Se desarrollaron dos ensayos SYBR Green qPCR para la detección y cuantificación específica de...
-
Ensayo RT-LAMP para la detección del Brassica Yellows Virus en China
Se estableció un ensayo de amplificación isotérmica mediada por bucle de transcripción inversa...
