Detección de malezas en campos de cacahuate basada en visión artificial
Usuario Sábado, 24 de Septiembre de 2022 Artículos Científicos

Se propone un modelo de identificación de malezas denominado EM-YOLOv4-Tiny que incorpora mecanismos de detección y atención multiescala basados en YOLOv4-Tiny. Los resultados experimentales muestran que la red EM-YOLOv4-Tiny tiene un tamaño de 28.7 M y tarda 10.4 ms en detectar una sola imagen, lo que cumple con el requisito de detección de malezas en tiempo real.
- Más información en: mdpi.com
Noticias similares
-
Italia: Uso de datos hiperespectrales de las hojas para detectar tempranamente a la Flavescencia dorada
En un viñedo de uva roja afectado por la Flavescencia dorada (FD), se demostró que los datos...
-
Primer reporte de Meloidogyne enterolobii infectando tomate en Texas, Estados Unidos
Se observó que una planta de tomate (Solanum lycopersicum) comprada a un minorista, presentaba...
-
Primer reporte de Stemphylium lycopersici que causa manchas foliares en Kalanchoe blossfeldiana en los USA
Plantas de Kalanchoe blossfeldiana mostraron edemas y manchas necróticas en un invernadero en...