Detección temprana e identificación de enfermedades de la uva mediante redes neuronales convolucionales
Usuario Martes, 1 de Marzo de 2022 Artículos Científicos

Se desarrolló un modelo de red neuronal convolucional profunda (DCNN) para identificar y clasificar las enfermedades de la uva en función de las imágenes de hojas RGB. El modelo logró una precisión del 99,34 %. Estos resultados indican la capacidad de los modelos para identificar y clasificar con precisión las enfermedades en uvas.
- Más información en: link.springer.com
Noticias similares
-
Italia: Uso de datos hiperespectrales de las hojas para detectar tempranamente a la Flavescencia dorada
En un viñedo de uva roja afectado por la Flavescencia dorada (FD), se demostró que los datos...
-
Primer reporte de Meloidogyne enterolobii infectando tomate en Texas, Estados Unidos
Se observó que una planta de tomate (Solanum lycopersicum) comprada a un minorista, presentaba...
-
Primer reporte de Stemphylium lycopersici que causa manchas foliares en Kalanchoe blossfeldiana en los USA
Plantas de Kalanchoe blossfeldiana mostraron edemas y manchas necróticas en un invernadero en...